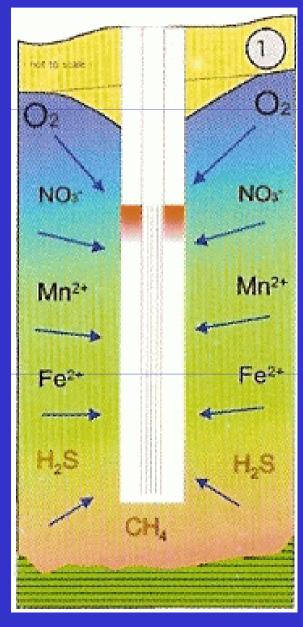
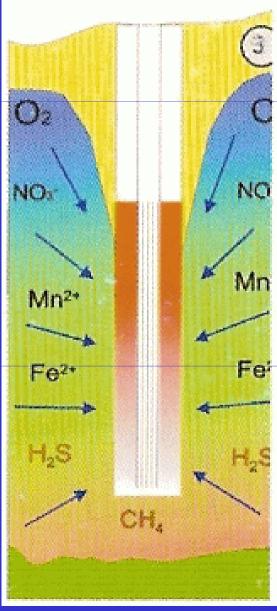
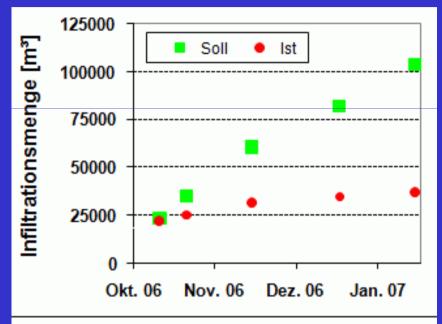

Ausgewählte Probleme der GW-Dynamik

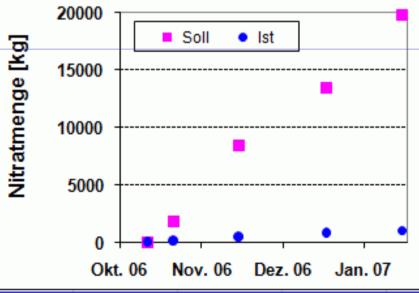
TUD, Institut für GW-Wirtschaft

Unterirdische GW-Enteisenung und Schadstoffelimination durch eine in-situ Bio-Oxidation im Fassungsbereich eines Berliner Wasserwerkes

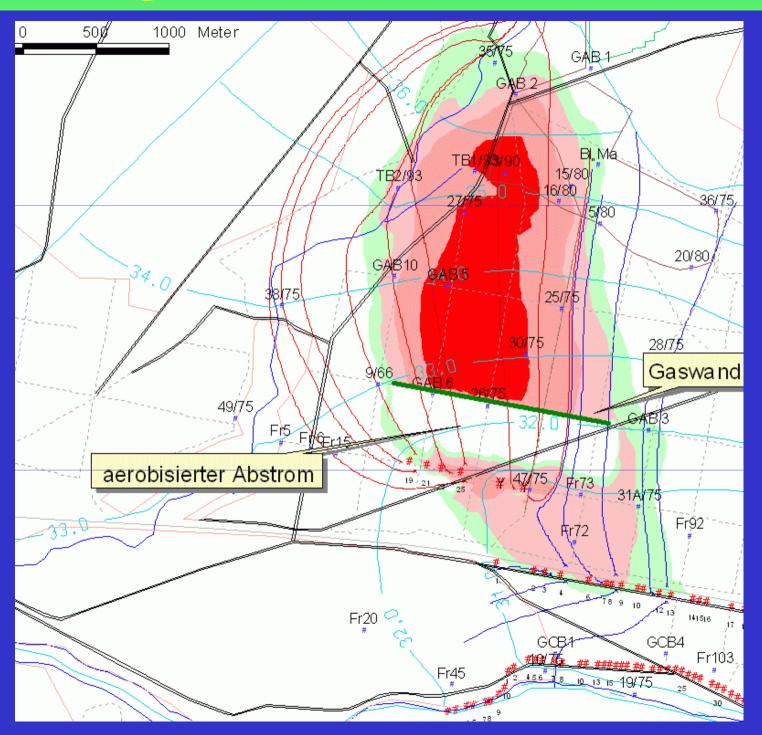

Dr. rer. nat. Frank Ingolf Engelmann

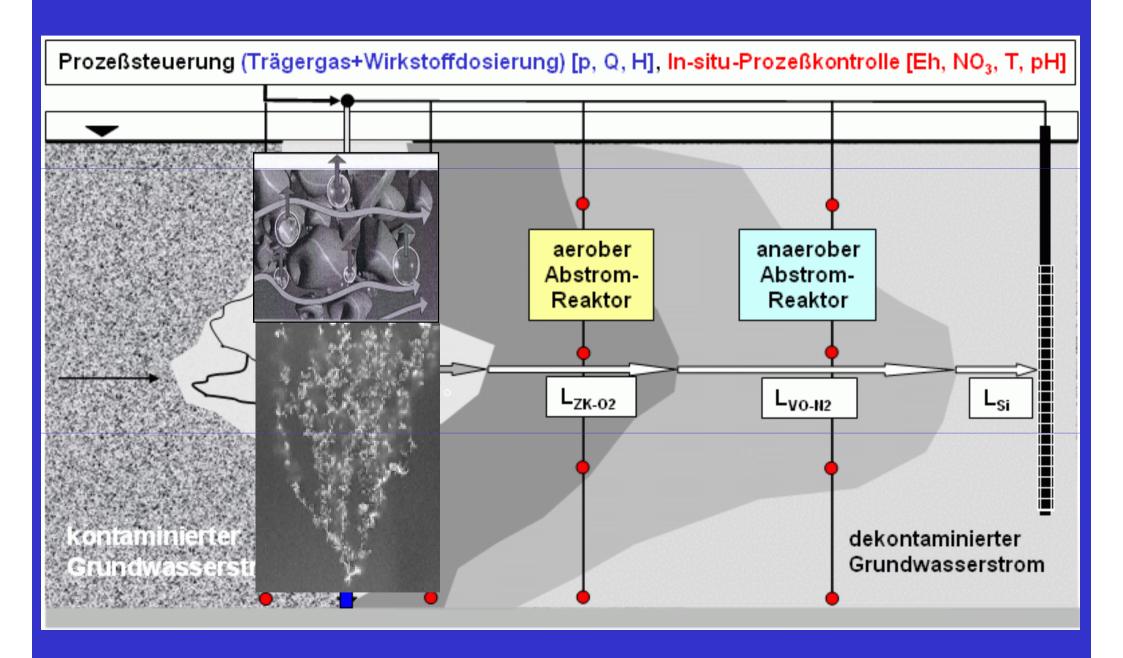


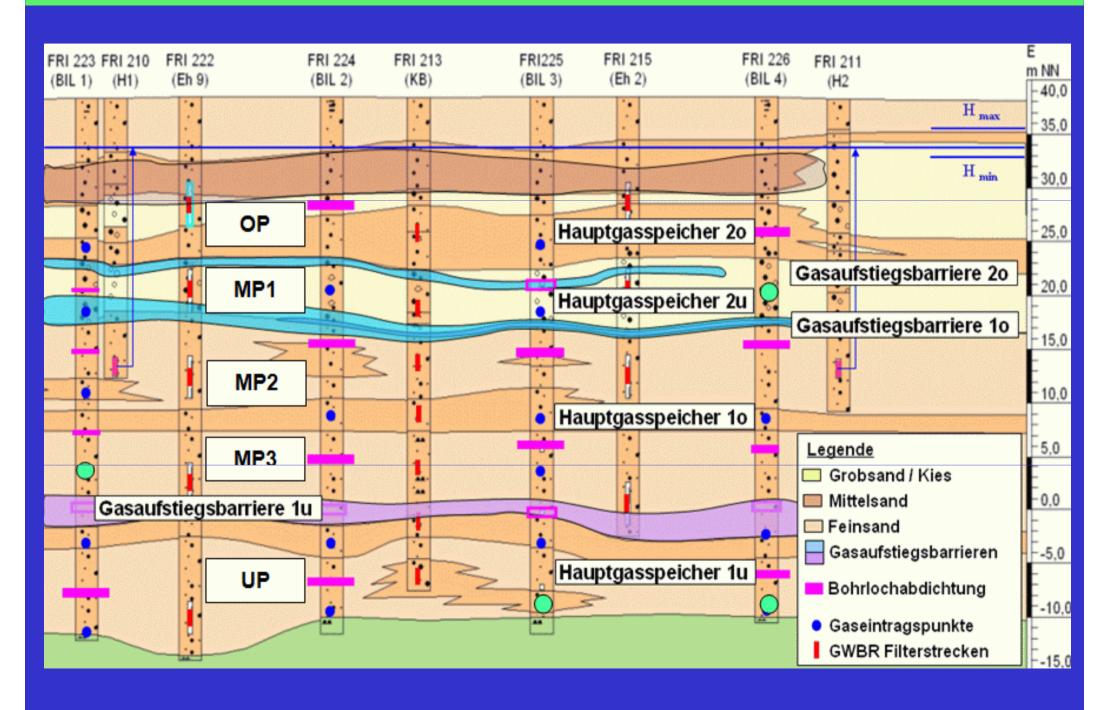

Brunnenverockerung

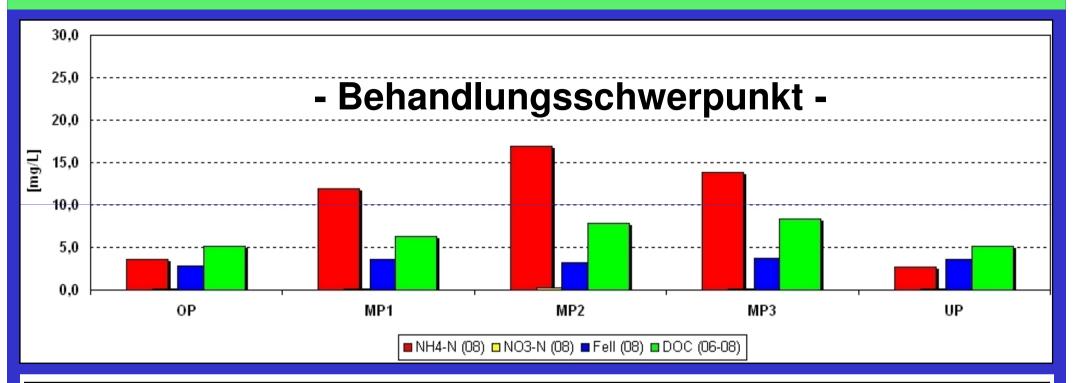

Förderbrunnen

$$Fe^{2+} + \frac{1}{4}O_2 + \frac{5}{2}H_2O \Leftrightarrow Fe(OH)_3 + 2H^+$$
 Infiltrationsbrunnen






Formierung von in-situ Durchflussreaktoren


Bio-Oxidationswände für Frachtreduzierungen

Erstellung gashydrogeologisches Strukturmodell

Schematisierung teufenspezifischer Belastungen

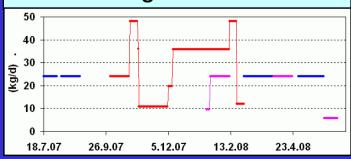
Horizont	mittlerer	mittlere	mittlerer	mittlere	mittlere	PVA
	kf-Wert	Geschwindigkeit	Durchfluss	NH₄-N	NH₄-Fracht	40 m Wand
(Abb. 1.4)	(m/s)	(v _a , m/d)	(Q, m³/d)	(c, g/m³)	(M, kg/d)	(d)
OP	0,0001	0,61	213,5	4	0,85	400
MP1	0,0015	0,99	346,5	12	4,16	40,4
MP2	0,0006	0,41	143,5	17	2,44	97
MP3	0,0007	0,52	182	14	2,55	77
UP	0,00001	0,008	2,8	3	0,008	5000
			709 m³/d		9,97 kg/d	

Versauerungsprozesse

$$r_{Pyrit} = -\frac{\partial C_{Pyrit}}{\partial t} = \left(C_{O_2}^{0.5} + f_2 \cdot C_{NO_3^-}^{0.5}\right) \cdot C_{H^+}^{-0.11} \left(10^{-10.19} \cdot \left(\frac{A_{Pyrit}}{V_{L\"{o}sung}}\right)\right) \cdot \left(\frac{C_{Pyrit}}{C_{O_{Pyrit}}}\right)^{0.67}$$

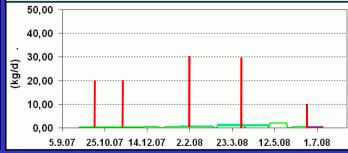
$NH_4^+ + 2O_2$	$\rightarrow NO_3^- + H_2O + 2H^+$	Nitrifikation von Ammoniumstickstoff
R-NH ₂ + 2 O ₂	\rightarrow R-OH + NO ₃ ⁻ + H ⁺	Mineralisation organischer Stickstoff
RCOOH	→ RCOO ⁻ + H ⁺	Dissoziation organischer Säuren
R-SH + H ₂ O + 2 O ₂	\rightarrow R-OH + SO ₄ ²⁻ + 2 H ⁺	Mineralisation / Sulfurikation org. Schwefel
CO _{2(g)} + H ₂ O	$\rightarrow CO_{2(aq)}$	Dissoziation von Kohlendioxid
CO _{2(aq)} + H ₂ O	$\rightarrow \text{H}_2\text{CO}_3 \rightarrow \text{HCO}_3^- + \text{H}^+$	
H ₂ CO ₃	→ HCO ₃ ⁻ + H ⁺	
ROOH + Me ⁺	→ ROOMe + H ⁺	Wurzelaufnahme von Kationen

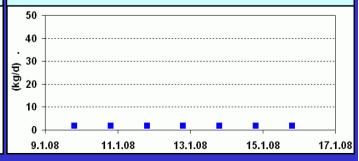
Protonenpufferprozesse


CaCO ₃	+ H ⁺	→ HCO ₃ ⁻ + Ca ²⁺	Carbonat	
HCO₃⁻	+ H ⁺	\rightarrow CO ₂ + H ₂ O	Hydrogenkarbonat	
тм-он]м	+ H ⁺	\rightarrow TM-OH ₂] + M ⁺	Tonminerale - Austauscher mit variabler Ladung	
тм-он	+ H ⁺	\rightarrow TM-OH ₂ ⁺	Tonminerale - Austauscher mit variabler Ladung	
R-(COO)M	+ H ⁺	\rightarrow R-(COO)H + M ⁺	Huminstoffe - Austauscher mit variabler Ladung	
R-NH ₂	+ H ⁺	\rightarrow R-NH ₃ ⁺	Huminstoffe - Austauscher mit variabler Ladung	
-(SiO)M	+ H ⁺	\rightarrow -(SiOH) + M ⁺	primäre Silicate	
-(SiO)₃AI	+ H ⁺	\rightarrow -(SiOH) ₃ + Al ³⁺	Tonminerale ohne permeable Ladung	
Mg(O,OH) ⁻]M	+ 3 H ⁺	\rightarrow Mg ²⁺ + M ⁺ + 2 H ₂ O	Tonminerale mit permeable Ladung okt.	
AIO ₂ -]M	+ 4 H ⁺	$\rightarrow Al^{3+} + M^{+} + 2 H_{2}O$	Tonminerale mit permeable Ladung tetr.	
AI(OH) ₃	+ 3 H ⁺	\rightarrow Al ³⁺ + 3 H ₂ O	Al-Hydroxide, Zwischenschichtaluminium	
AIOHSO ₄	+ H ⁺	$\rightarrow Al^{3+} + SO_4^{2-} + H_2O$	Al-OH-Sulfate	
FeOOH	+ 3 H ⁺	\rightarrow Fe ³⁺ + 2 H ₂ O	Fe-Oxide / Hydroxide ohne Reduktion	
4 FeOOH + CH ₂ O + 8 H ⁺ \rightarrow 4 Fe ²⁺ + CO ₂ + 7 H ₂ O		\rightarrow 4 Fe ²⁺ + CO ₂ + 7 H ₂ O	Fe-Oxide / Hydroxide mit Reduktion	
2 MnO ₂ + CH ₂ O	+ 4 H ⁺	\rightarrow 2 Mn ²⁺ + CO ₂ + 3 H ₂ O	Mn-Oxide / Hydroxide mit Reduktion	

Injektionsmethoden (on-site Technik)

Niedrigdruckinjektionen für Trägergase + Gaswirkstoffe


- $-p_{DGI} = PWD + 0.15 bar$
- $Q_{DGI} = 0,1-3 \text{ Nm}^3/\text{h}$
- $t_{DGI} = (0,5-5) \times t_{Ruhephase}$
- Wirkstoffzugabe nach Bedarf


Niedrigdruckinjektion mit temp. Hochdruckimpulsinjektionen

- $-p_{DGI} = PWD + 10 bar$
- $Q_{DGI} = 0,1-1 \text{ Nm}^3/\text{h}$
- t_{DGI} quasi kontinuierlich
- Zusatzimpulse Gaswirkstoff

gepulste Druckinjektionen

- $-p_{DGI} = 2-4 \text{ bar}$
- $Q_{DGI} = 2-4 \text{ Nm}^3/\text{h}$
- $t_{DGI} = 0.002 \times t_{Ruhephase}$ (2 min)
- Gefahr für Gasdurchbrüche

NDI+HDI für Quellen

gDI für Fahnen

NDI für Fahnen

Sauerstoffbilanzierung

MA 02-Bilanzmodul Datei Berechnen Info

Eingabeparameter Ergebnisse Druckvorschau

Oxidationsfahnenlängen

L_OF(i)= 62,3 m

L_OF(j)=

62,3 r

 $L_OF(k) =$

62,3

m

Bilanzmengen

Dilanzinengen					
M_02 (Eintrag) =	3.581,1	kg			
Summe M_02 (Umsatze) =	3.148,8	kg			
M_02 (FZ-GB) =	1.413,2	kg			
M_02 (FZ-0F) =	560,3	kg			
M_02 (aq) =	137,4	kg			
M_02 (NH4-Umsatz) =	1.038,0	kg			
M_02 (NH4-U-GB,aq) =	81,7	kg			
M_02 (NH4-U-GB,zu) =	956,3	kg			
M_02 (Verluste) =	0,0	kg			
M_02 (immobil) =	432,3	kg			
Q_02 (Eintrag) =	1,1	m³/h			

$M_{O2 \text{ (Eintrag)}} = \sum M_{O2 \text{ (Umsatze)}} + \sum M_{O2 \text{ (Verluste)}} + M_{O2 \text{ (Immobil)}}$

$$\sum M_{02\;(\text{Umsätze})} = M_{02\;(\text{FZ-GB})} + M_{02\;(\text{FZ-OF})} + M_{02\;(\text{aq})} + M_{02\;(\text{NH4-Umsatz})}$$

$$M_{02(FZ-GB)} = \Sigma (\Pi * r_{oi-(i,jk)}^2 * H_{GB(i,jk)} * m_{o2-ZK,GB(i,jk)}) * \rho_t$$

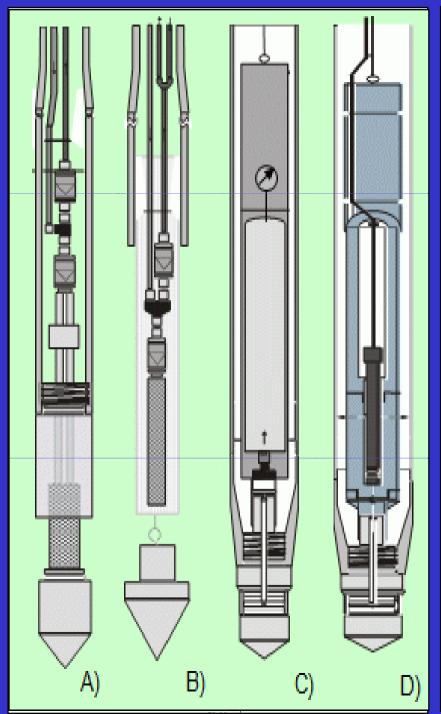
$$M_{02(FZ-0F)} = \sum (L_{0F(ij,k)} * B_{0F(ij,k)} * H_{0F(ij,k)} * m_{02-Zk, 0F(ij,k)}) * \rho_{i}$$

$$\mathsf{M}_{\mathsf{O2}(\mathsf{aq})} = \Sigma \left(\Pi^* \, \mathsf{r}_{\mathsf{oi} \, \cdot \, (\mathsf{ij},\mathsf{k})}^{\;\; 2} \, ^* \, \mathsf{H}_{\mathsf{GB} \, (\mathsf{ij},\mathsf{k})}^{\;\; *} \, \mathsf{n}_{\mathsf{g}} \, ^* \, \mathsf{C}_{\mathsf{O2}\mathsf{aq}, \, \mathsf{GB} \, (\mathsf{ij},\mathsf{k})} \right) + \Sigma \left(\mathsf{L}_{\mathsf{OF} \, (\mathsf{ij},\mathsf{k})} \, ^* \, \mathsf{B}_{\mathsf{OF}} \right)$$

$$M_{02(NH4-Umsatz)} = M_{02(NH4-U-GB, aq)} + M_{02(NH4-U-GB, zu)}$$

$$M_{02(NH4-U-GB, aq)} = \sum (\Pi^* r_{oi-(ij,k)}^2 + H_{GB(ij,k)}) + n_g^* (c_{NH4-N(aq)-t0} - c_{NH4-N(aq)-t0})$$

$$M_{02(NH4-U-GB, zu)} = q_w * A_{GB-zu} * t_{NO3} * (c_{NH4-N(aq)zu} - c_{NH4-N(aq)tB)} * F$$

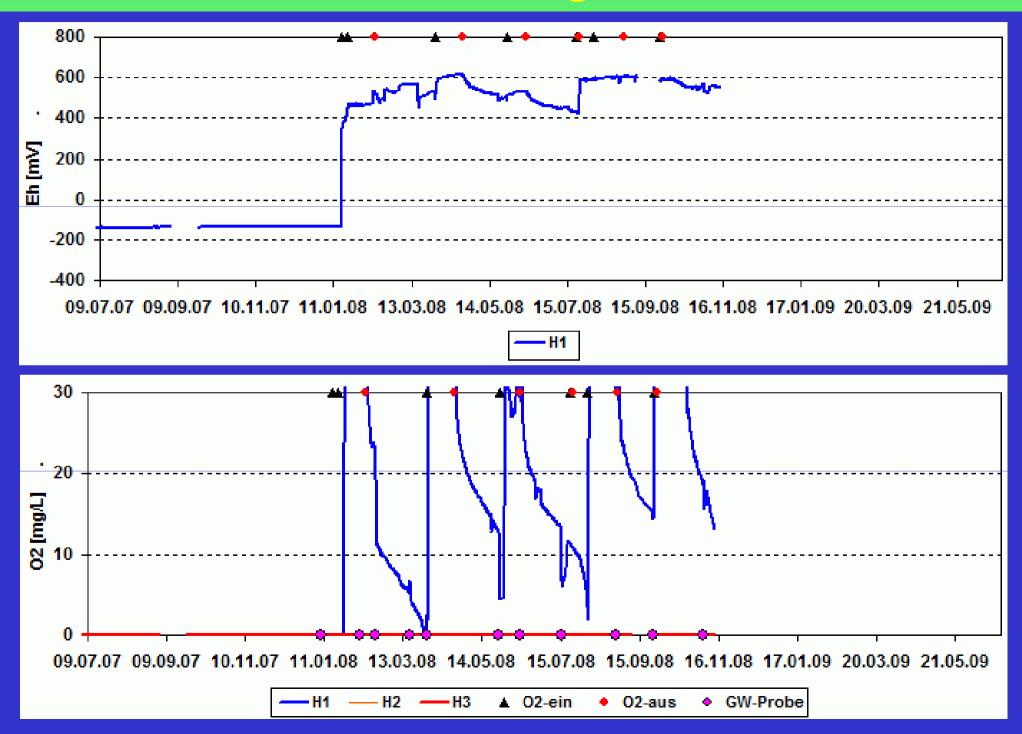

$$M_{02 \text{ (Verluste)}} = 0$$

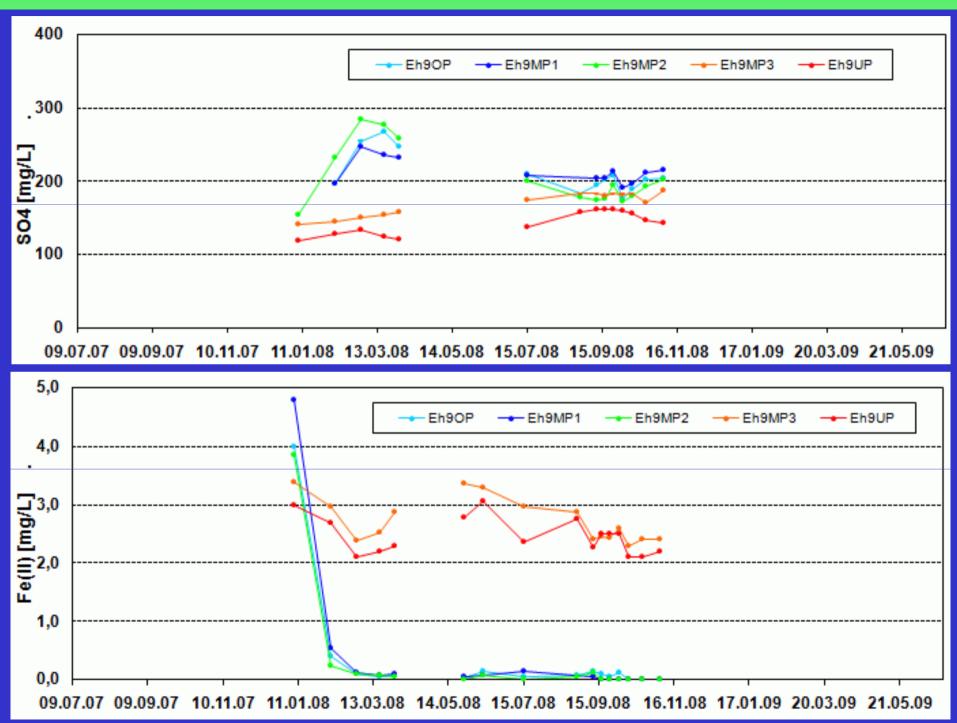
$$M_{02 \text{ (immobil)}} = \sum (\Pi^* r_{oi - (i,jk)}^2 H_{GB (i,k)})^* n_g^* S_{G, \text{ immobil } (i,jk)}^* p_{WD (i,j,k)} / (R^*)$$

$$Q_{02(\mathsf{Bintrag})} = \mathsf{M}_{02(\mathsf{Bintrag})} / (\mathsf{t}_{\mathsf{ein}} * \mathsf{p} / (\mathsf{R} * \mathsf{T})$$

•

In-situ Monitoringelemente zur GW-Überwachung




Nachweis der Aerobisierung mit in-situ Sensorik

Sulfatentwicklung und Eisenfällung

Pyritoxidation und Eisenfällung

